What is a golden rectangle?
In geometry, a golden rectangle is a rectangle whose side lengths are in the golden ratio, 1:1+sqrt(5)/2 which is 1:phi is approximately 1.618. Golden rectangles exhibit a special form of self-similarity: All rectangles created by adding or removing a square are Golden rectangles as well. A distinctive feature of this shape is that when a square section is added—or removed—the product is another golden rectangle, having the same aspect ratio as the first. Square addition or removal can be repeated infinitely, in which case corresponding corners of the squares form an infinite sequence of points on the golden spiral, the unique logarithmic spiral with this property. Diagonal lines drawn between the first two orders of embedded golden rectangles will define the intersection point of the diagonals of all the embedded golden rectangles; Clifford A. Pickover referred to this point as "the Eye of God"
How to Calculate Area of Golden Rectangle?
Area of Golden Rectangle calculator uses area = (Long edge^2)/[phi] to calculate the Area, The Area of golden rectangle formula is defined as measure of the total area that the surface of the object occupies of a golden rectangle , where area = area of golden rectangle. Area and is denoted by A symbol.
How to calculate Area of Golden Rectangle using this online calculator? To use this online calculator for Area of Golden Rectangle, enter Long edge (a) and hit the calculate button. Here is how the Area of Golden Rectangle calculation can be explained with given input values -> 61.8034 = (10^2)/[phi].